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Lecture outline

Longitudinal motion of particles in bunch.

The Vlasov equation for the distribution function.

Keil-Schnell stability criterium for coasting beam.

Haissinski equation for the beam equilibrium.
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Long-range and short-range wake fields

In L8 and L9 we studied the long-range wake fields. We modeled the
beam as a set of bunches, with each bunch represented by a single large
”point-like” charge. The long-range wake fields couple the motion of
different bunches.

In this lecture, we will study effects of a short-range longitudinal wake
(we studied the short-range transverse wake in L7 for BBU). A short-
range wake field is one that extends only over the length of a single
bunch. (In the frequency domain, this corresponds to high frequencies,
ω & c/σz).

To understand the effects of short-range wake fields, we have to consider
the ”internal” dynamics of individual bunches. We will model the bunch
as a charge distribution, and try to work out how the distribution
function evolves over time, in the presence of a wake field.

We will use the fact that longitudinal instabilities are slow and evolve on
a time scale much larger than the revolution period T .
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Longitudinal dynamics with wakes

For the longitudinal wake per unit path, w`, −cq2w` is the energy change per
unit time (see Eq. (3.1)), so

η̇ =
1

α

ω2
s0

c
z −

q2

γmc
W` (10.1)

where W` is the wake in the bunch. We find (see Eq. (9.4))

z̈ +ω2
s0z =

q2α

γm
W` (10.2)

The equation for η can be written as

η̇ = K (z , t) (10.3)

where (q → e)

K (z , t) =
ω2

s0

αc
z −

e2

γmc

∫∞
z

dz ′n(z ′, t)w`(z
′ − z) (10.4)

(if the wake does not vanish for negative z then the integration goes from minus
infinity). In Eq. (10.4) n(z , t) = Nλ(z , t) is the linear beam density (number of
particles per unit length),

∫∞
−∞ n(s, t)ds = N, where N is the number of

particles in the bunch. The second term in K gives the energy change resulting
from the wake fields.
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Longitudinal Hamiltonian

The wake for the whole ring is equal to Cw` where C is the ring
circumference.
Eqs. (10.3) and (10.4) can be also written with the help of a
Hamiltonian,

H(z ,−η, t) =
1

2
cαη2 + V (z , t)

=
1

2
cαη2 +

ω2
s0

2αc
z2 −

e2

γmc

z∫
0

dz ′
∞∫
z ′

dz ′′n(z ′′, t)w`(z
′′ − z ′) (10.5)

in which z plays a role of a coordinate, and −η is the conjugate
momentum.
We have

ż =
∂H

∂(−η)
, η̇ =

∂H

∂z
(10.6)
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Longitudinal Hamiltonian

Exchanging the order of integration over z ′ and z ′′ in Eq. (10.5) we can
write the Hamiltonian as

H(z ,−η, t) =
1

2
cαη2 +

ω2
z0

2αc
z2 +

e2

γmc

∞∫
z

dz ′n(z ′, t)S(z ′ − z) (10.7)

where

S(z) =

∫ z
0
ds w`(s)

We will need this formulation when we discuss the beam equilibrium later.
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Distribution function f

We will use a distribution function f (z , η, t) of the particles. The quantity
dN = f (z , η, t)dz dη is the number of particles in the infinitesimally small area
of the phase space dz dη. Integrating over η gives the particle density

n(z , t) =
∞∫
−∞ f (z , η, t)dη. An example of numerical simulations of f .
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The Vlasov equation

This distribution function satisfies the Vlasov equation (9.21)

∂f

∂t
+ ż

∂f

∂z
+ η̇

∂f

∂η
= 0 (10.8)

Substituting ż and η̇ from (10.3) we obtain

∂f

∂t
− cαη

∂f

∂z
+ K (z , t)

∂f

∂η
= 0 (10.9)

If we want to take into account damping and diffusion due to synchrotron
radiation, then

∂f

∂t
− cαη

∂f

∂z
+ K (z , t)

∂f

∂η
= R[f ]

where R is a (differential or integral) operator acting on f (see29). In what
follows we set R = 0.

29
G. Stupakov and G. Penn. Classical Mechanics and Electromagnetism in Accelerator Physics, Springer, 2018.
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Coasting beam approximation

The simplest stability problem that can be solved analytically with the Vlasov
equation is stability of a coasting beam. For a coasting beam we can use the
Vlasov equation (10.9) putting ωs0 = 0 in (10.4).

Before addressing stability, one has to define an equilibrium solution, that is the
one which does not depend on time. We start from the equilibrium solution in
which f does not depend on z (coasting) and t, f = f0(η). Correspondingly, the
beam (linear) density is constant n = n0. To satisfy (10.9) we need

K = −
e2n0

γmc

∫∞
z

dz ′ w`(z
′ − z) = 0

or ∫∞
0

w`(s)ds = 0

As we discussed earlier, this is an important property of the longitudinal wakes.
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Longitudinal instability for a coasting beam

We now assume f = f0(η) + f1(z , η, t) and n = n0 + n1 with |f1|� f0

and |n1|� n0 (remember that n(z , t) =
∞∫
−∞ f (z , η, t)dη). We linearize

Eq. (10.9) keeping only first order terms in f1 and n1. We then assume
f1, n1 ∝ exp(−iωt + ikz), where ω is the frequency and k = 2π/λ is the
wavenumber of the perturbation,

− iωf1 − ikcαηf1 −
e2

γmc

df0
dη

n1

∫∞
z

dz ′e−ikz+ikz ′w`(z
′ − z) = 0

The last integral is equal to cZ`(ck) where Z` is the longitudinal
impedance per unit length. This gives

− i(ω+ kcαη)f1 =
e2

γm

df0
dη

n1Z`(ck)
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Longitudinal instability for a coasting beam

from which we find f1

f1 = i
e2

γm

df0
dη

n1Z`(ck)
1

ω+ kcαη

We now use n1 =
∫
f1dη. Integrating over η gives the dispersion relation

we obtain

i
e2

γm
Z`(ck)

∫∞
−∞ dη

df0/dη

ω+ kcαη
= 1 (10.10)

Consider first the case of a cold beam, f0 = n0δ(η). Integrating by parts
gives

n0

∫∞
−∞ dη

dδ(η)/dη

ω+ kcαη
= cαkn0

∫∞
−∞ dη

δ(η)

(ω+ kcαη)2
=

cαkn0

ω2
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Cold coasting beam is (almost) always unstable

This gives the dispersion relation

ω2 = i
αe2cn0k

γm
Z`(ck) = i

αeIk

γm
Z`(ck) (10.11)

where we have used the beam current I = ecn0. Since Z` is a complex
number, this means that the beam is unstable (unless Z` is purely
imaginary with ImZ` < 0, [and the ring is above the transition, α > 0],
which is the case of an inductive impedance (6.2), Z` = −iωL).

Example of instability: the resistive wake (6.1) with Z` = R:

ω0(k) = ±(1 + i)

√
αeIkR

2γm
(10.12)

Shorter wavelengths (larger values of k) have a larger growth rate.
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Finite energy spread and Landau damping

With finite energy spread, we need to solve

e2

mγ
Z`(ck) =

(
i

∫∞
−∞ dη

df0/dη

ω+ kcαη

)−1

(10.13)

and find the dispersion relation ω(k). If Imω(k) > 0 we have an instability.

For a given value of k we need to be able to calculate∫∞
−∞ dη

df0/dη

ω+ kcαη
(10.14)

for every value of ω, including real ω. However, for real ω there is a singularity
in the integrand. How do we treat it?

This problem has been solved by L. Landau in 1946, for plasma oscillations. He
showed that the correct solution can be obtained using the Laplace transform of
the Vlasov equation (instead of the Fourier transform in ω) with initial
conditions. His result: one can use (10.14) in the upper half plane of complex
ω. For the lower half-plane, or real omega, one should change the integration
path in the complex plane of η.
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Integration path in complex plane η

Re η

Im η

ω

Re η

Im η

ω

Re η

Im η

ω

Note that we have to redefine our
distribution function f0 as a function
of the complex variable η (that is,
to analytically extend it to the
complex plane η). For a Gaussian

distribution function ∝ e−η
2/2σ2

η this
is not a problem.
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Finite energy spread and Landau damping

Some authors like to draw a stability diagram where the axes are the real
and imaginary parts of the right hand side of Eq. (10.13)30. Then they
infer the stability condition from this diagram. With modern computers
this does not make much sense—one just need to solve this equation
numerically scanning the k values. This can be done for a given
distribution function f0(η) and impedance Z`.

30
See lecture notes by A. Wolski.
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Landau damping for resistive impedance

Two lines of Mathematica code solve the problem of the stability with
resistive impedance R.
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Landau damping for resistive impedance

Plot of Reω (red) and Imω (blue) normalized by the cold limit ω0

(see (10.12)) as a function of k normalized by k0
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k0 =
e2Rn0

γmσ2
ηcα

(10.15)

The instability is suppressed for
k > 0.7k0.

The stabilizing mechanism that suppresses the instability at large values of k is
called the Landau damping. You can read a detailed explanation of Landau
damping mechanism in A. Chao’s book, Section 5.1.
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General criterion for microwave instability

Analysis of several models of impedance show that the stability criterion
is approximately valid if we replace R by |Z (ck)|

k &
e2|Z (ck)|n0

γmσ2
ηcα

(10.16)

or

σ2
η &

e2n0

γmkcα
|Z`(ck)| (10.17)

It is often written in a different way. The impedance in Eq. (10.17) is per
unit length. If we use the impedance of the ring, Z ◦, then Z` = Z ◦/cT .

σ2
η &

e2n0

mkc2Tγα
|Z ◦(ck)| (10.18)

The quantity 1/cTk is denoted as 1/2πn, where n = ck/ωrev = Ck/2π.
Noting that cen0 = I , we obtain

2πα(γmc2)σ2
η & eI

|Z ◦(n)|

n
(10.19)
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Keil-Schnell-Boussard criterion

�

�

We derived this criterion for a
coasting beam, but it can also be
applied to a bunched beam if we
consider perturbations with the
wavelength λ/2π� σz . Then
locally the beam looks like a
coasting one. For the beam current
I we should use the peak current in
the bunch (not the averaged current
in the ring).

If this criterion is used for a bunched beam, it gives a crude estimate for
the stability requirements of the beam. In this context it is often called
the Keil-Schnell or Keil-Schnell-Boussard criterion. The instability is
often referred to as the microwave instability. It is associated with
turbulent bunch lengthening.
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Bunch equilibrium without wake

A strong longitudinal wake in a bunch not only can cause beam instability, but
also modifies its equilibrium. Here we will derive an equation that describes the
beam equilibrium with account of the wake.
Let us first consider the equilibrium without a wake. Start from the
Hamiltonian (10.5) with w` = 0,

H(z ,−η) =
1

2
cαη2 + V (z) =

1

2
cαη2 +

ω2
s0

2αc
z2 (10.20)

We know that the distribution function f (η, z) is constant along the
trajectories. Since the Hamiltonian does not depend on time, it is constant
along the trajectories. It is reasonable to assume that f is a function of H only.
On the other hand, it is known that in electron rings, the longitudinal
distribution function is Gaussian

f (η, z) = A exp

(
−
η2

2σ2
η

−
z2

2σ2
z0

)
(10.21)

where A is the normalization constant.
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Bunch equilibrium without wake

This is possible if

f (η, z) = A exp

(
−

H

cασ2
η

)
= A exp

(
−
η2

2σ2
η

−
ω2

s0z
2

2α2c2σ2
η

)
(10.22)

We also found that σz0 = ασηc/ωs0.
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Equilibrium with wake

It turns out that with account of the wake the equilibrium is given by the
same equation, which is now called the Häıssinski equation

f = Z exp

(
−

H

cασ2
η

)
= Z exp

(
−
η2

2σ2
η

−
V (z)

cασ2
η

)
(10.23)

But now this should be solved self-consistently because V is a functional
of n(z)

V (z) =
ω2

s0

2αc
z2 +

e2

mcγ

∞∫
z

dz ′n(z ′, t)S(z ′ − z)

=
ω2

s0

2αc
z2 +

e2

mcγ

∞∫
z

dz ′S(z ′ − z)

∫
dηf (z ′, η) (10.24)

22



Numerical solution of the Häıssinski equation
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Solution of Häıssinski equation—SLCDR

We consider here an example of the SLC damping ring, whose stability
was studied in great detail by K. Bane from SLAC.

Parameter Value Units

Energy 1.15 GeV

Np 2× 1010

T0 118 ns

ω0/2π 99 kHz

ση 7× 10−4

σz0 0.5 cm
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Wake and and the beam equilibrium
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Observations of the microwave instability

From K. Bane et al. SLAC-PUB-95-6894 (1995).
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Synchrotron frequency depends on the amplitude

One of the important consequences of Häıssinski equilibrium is that the
synchrotron frequency is not constant any more — it depends on the
amplitude of the oscillations in the potential well,

ωs(J) = ωs0 + ∆ωs(J), (10.25)

where J is the “action” variable for the longitudinal motion. This occurs
because the potential well for the synchrotron oscillations is not parabolic
any more.
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