Lecture 10

Single bunch longitudinal instabilities
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Lecture outline

@ Longitudinal motion of particles in bunch.
@ The Vlasov equation for the distribution function.
o Keil-Schnell stability criterium for coasting beam.

@ Haissinski equation for the beam equilibrium.



Long-range and short-range wake fields

In L8 and L9 we studied the long-range wake fields. We modeled the
beam as a set of bunches, with each bunch represented by a single large
" point-like” charge. The long-range wake fields couple the motion of
different bunches.

In this lecture, we will study effects of a short-range longitudinal wake
(we studied the short-range transverse wake in L7 for BBU). A short-
range wake field is one that extends only over the length of a single
bunch. (In the frequency domain, this corresponds to high frequencies,
w 2> c/oy).

To understand the effects of short-range wake fields, we have to consider
the "internal” dynamics of individual bunches. We will model the bunch
as a charge distribution, and try to work out how the distribution
function evolves over time, in the presence of a wake field.

We will use the fact that longitudinal instabilities are slow and evolve on
a time scale much larger than the revolution period T.



Longitudinal dynamics with wakes

For the longitudinal wake per unit path, wy, —cq®w; is the energy change per

unit time (see Eq. (3.1)), so

( q. (3.1)) .1 wgo ¢

n=——>z——W, (10.1)
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where W, is the wake in the bunch. We find (see Eq. (9.4))
2

it wlz = i—:]‘ W, (10.2)
The equation for 11 can be written as
1M1= K(z,t) (10.3)
where (g — e)
K(z,t) = (:‘E:OZ— yeniCJ':(’ dz'n(z’, t)w(z' — 2) (10.4)

(if the wake does not vanish for negative z then the integration goes from minus
infinity). In Eq. (10.4) n(z,t) = NA(z, t) is the linear beam density (number of
particles per unit length), fiooo n(s,t)ds = N, where N is the number of
particles in the bunch. The second term in K gives the energy change resulting
from the wake fields.



Longitudinal Hamiltonian

The wake for the whole ring is equal to Cwy where C is the ring
circumference.

Egs. (10.3) and (10.4) can be also written with the help of a
Hamiltonian,

1
H(z,—,t) = —com2 + V(z,t)

2
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in which z plays a role of a coordinate, and —n1) is the conjugate
momentum.
We have

P = (10.6)



Longitudinal Hamiltonian

Exchanging the order of integration over z’ and z” in Eq. (10.5) we can
write the Hamiltonian as

1 2 w20 2 e? i ! /
H(z,—, t) =5cam +2chz +Wjdz n(z',t)S(z' —z) (10.7)

where

S(z) = J: ds wy(s)

We will need this formulation when we discuss the beam equilibrium later.



Distribution function f

We will use a distribution function f(z,n, t) of the particles. The quantity
dN = f(z,m, t)dz dn is the number of particles in the infinitesimally small area
of the phase space dz dn. Integrating over n gives the particle density

o0

n(z,t) = [ f(z,m,t)dn. An example of numerical simulations of f.
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From Venturini et al., PRAB, 8, 014202 (2005).



The Vlasov equation

This distribution function satisfies the Vlasov equation (9.21)

of .of . Oof
a—f—za —i—na—O (10.8)
Substituting z and 1] from (10.3) we obtain
of of of

If we want to take into account damping and diffusion due to synchrotron

radiation, then " v v
57 — comaz + Klz, )5 = RIf
where R is a (differential or integral) operator acting on f (see??). In what

follows we set R = 0.

2
9G. Stupakov and G. Penn. Classical Mechanics and Electromagnetism in Accelerator Physics, Springer, 2018.



Coasting beam approximation

The simplest stability problem that can be solved analytically with the Vlasov
equation is stability of a coasting beam. For a coasting beam we can use the
Vlasov equation (10.9) putting wso = 0 in (10.4).

Before addressing stability, one has to define an equilibrium solution, that is the
one which does not depend on time. We start from the equilibrium solution in
which f does not depend on z (coasting) and t, f = fy(n). Correspondingly, the
beam (linear) density is constant n = ng. To satisfy (10.9) we need

62 h)

K=— J dz' wy(z' —2z) =0

ymc
or

J':Q we(s)ds =0

As we discussed earlier, this is an important property of the longitudinal wakes.



Longitudinal instability for a coasting beam

10

We now assume f = fy(n) + fi(z,m, t) and n = ng + n; with || < fy
o
and |n| < ng (remember that n(z,t) = [ f(z,m,t)dn). We linearize

(o)
Eq. (10.9) keeping only first order terms in f; and n;. We then assume
fi, 1 o< exp(—iwt + ikz), where w is the frequency and k = 27t/A is the
wavenumber of the perturbation,

. : & dfy [® , ikeiike' (s
—jwf — ikcanfy — ———nm dz'e wy(z'—2z)=0
ymedn™ |,
The last integral is equal to c¢Zy(ck) where Z; is the longitudinal
impedance per unit length. This gives

2 df;
—i(w + kcom)fy = e——onlzg(ck)
ym dn



Longitudinal instability for a coasting beam

from which we find f;

e2

A U O I
! Iymdnn1 e(c)w-l—kcom

We now use ny = [ fidn. Integrating over 1) gives the dispersion relation

we obtain ) - y
ie—Zg(ck)J an_df0/dn
Ym

— = 10.10
oo W+ kcom ( )

Consider first the case of a cold beam, fy = ngd(n). Integrating by parts
gives

nor‘) J dd(n)/dn *© 6(n) cockng

= k d =
oo W A+ kcom Sy JOO T](w + kcam)? w?
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Cold coasting beam is (almost) always unstable

12

This gives the dispersion relation

1k
Zi(ck) = i%8
ym ym

, .ae’cnok
W =i——

Zu(ck) (10.11)

where we have used the beam current | = ecng. Since Z; is a complex
number, this means that the beam is unstable (unless Z; is purely
imaginary with Im Z; < 0, [and the ring is above the transition, o > 0],
which is the case of an inductive impedance (6.2), Z; = —iwL).

Example of instability: the resistive wake (6.1) with Z; = R:

wo (k) = i(1+i),/°;”,‘nR (10.12)

Shorter wavelengths (larger values of k) have a larger growth rate.




Finite energy spread and Landau damping

With finite energy spread, we need to solve

o) —1
€ Z(ck) = (,J an> (10.13)
nry

oo W+ kcom

and find the dispersion relation w(k). If Im w(k) > 0 we have an instability.
For a given value of k we need to be able to calculate

J dn dfo/dn

10.14
oo W+ kcan ( )

for every value of w, including real w. However, for real w there is a singularity
in the integrand. How do we treat it?
This problem has been solved by L. Landau in 1946, for plasma oscillations. He
showed that the correct solution can be obtained using the Laplace transform of
the Vlasov equation (instead of the Fourier transform in w) with initial
conditions. His result: one can use (10.14) in the upper half plane of complex
w. For the lower half-plane, or real omega, one should change the integration
path in the complex plane of 7.
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Integration path in complex plane 1

Im 7 Im 7

w
&/
Re 7y Re 7y

Note that we have to redefine our
distribution function fy as a function
of the complex variable n (that is,
to analytically extend it to the
complex plane n). For a Gaussian
& Re 7 distribution function oc e /2% this
> is not a problem.

Imy
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Finite energy spread and Landau damping

Some authors like to draw a stability diagram where the axes are the real
and imaginary parts of the right hand side of Eq. (10.13)3". Then they
infer the stability condition from this diagram. With modern computers
this does not make much sense—one just need to solve this equation
numerically scanning the k values. This can be done for a given
distribution function fy(n) and impedance Z.

3OSee lecture notes by A. Wolski.
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Landau damping for resistive impedance

Two lines of Mathematica code solve the problem of the stability with
resistive impedance R.

e /2y

gla_]= Integrate[ ; {%, -Infinity, Infinity}, Assumptions —» Im[a] # 0] // PowerExpand;|
x

glx] ==y, (x, 3]}, (v, .01, 2, .013];

roots = Table Hy, x/. FindRoot[
27

pll :ListPlotH#[[l]], Re[a[[l]]]/'\/l/ @#[110) }n/a roots, plotstyle-.nea];

pl2 = ListPlotH#[[l]] , m[a[[z]]]/ V17 @#1]) } & /@ roots, PlotStyle -» Blue];
show[pll, pl2, Plot[0, {v, .0, 1}, PlotStyle -> Dashed], DisplayFunction -» $DisplayFunction,
FrameLabel -> {"k/ko", "Rew/Rewg, Imu/Imwg"},
PlotRange » {{0, 1}, All}]
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Rew/Recwy, Imw/imewy
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Landau damping for resistive impedance

Plot of Re w (red) and Im w (blue) normalized by the cold limit wq
(see (10.12)) as a function of k normalized by ko

2
R
ko= ——2 (10.15)
ymojcx

The instability is suppressed for
k > 0.7kp.

Kiko

The stabilizing mechanism that suppresses the instability at large values of k is
called the Landau damping. You can read a detailed explanation of Landau
damping mechanism in A. Chao's book, Section 5.1.
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General criterion for microwave instability

Analysis of several models of impedance show that the stability criterion
is approximately valid if we replace R by |Z(ck)|

2|Z(ck
k> Lg”"o (10.16)
ymo2cx
or ,
02 2 —% |z (ck)| (10.17)
ymkcx

It is often written in a different way. The impedance in Eq. (10.17) is per
unit length. If we use the impedance of the ring, Z°, then Z; = Z°/cT.

2
0_ > € Nno
~ mkc2Tyx
The quantity 1/cTk is denoted as 1/27tn, where n = ck/w.ey = Ck/2m.
Noting that ceng = I, we obtain

1Z°(ck) (10.18)

ZO
27toc(ymc2)GT2] eI| (m)]
n

(10.19)



Keil-Schnell-Boussard criterion

We derived this criterion for a
coasting beam, but it can also be
\[WW\ applied to a bunched beam if we
PN consider perturbations with the
wavelength A/2 < 0,. Then
locally the beam looks like a
coasting one. For the beam current
| we should use the peak current in
the bunch (not the averaged current
in the ring).

~NY

If this criterion is used for a bunched beam, it gives a crude estimate for
the stability requirements of the beam. In this context it is often called
the Keil-Schnell or Keil-Schnell-Boussard criterion. The instability is
often referred to as the microwave instability. It is associated with
turbulent bunch lengthening.
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Bunch equilibrium without wake

A strong longitudinal wake in a bunch not only can cause beam instability, but
also modifies its equilibrium. Here we will derive an equation that describes the
beam equilibrium with account of the wake.

Let us first consider the equilibrium without a wake. Start from the
Hamiltonian (10.5) with wy = 0,

2

H(z,—m) = %com2 +V(z) = %com2 + ;75222 (10.20)
We know that the distribution function f (1, z) is constant along the
trajectories. Since the Hamiltonian does not depend on time, it is constant
along the trajectories. It is reasonable to assume that f is a function of H only.
On the other hand, it is known that in electron rings, the longitudinal
distribution function is Gaussian

1?2 22
f(n,z) = Aexp (—262 ~ 552 ) (10.21)
n z0

where A is the normalization constant.
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Bunch equilibrium without wake

This is possible if

H n? w?2,z°
f(n,z) = Aexp <— COCO‘TQ]) = Aexp (_R — ﬁ (10.22)

We also found that 0,9 = aoyc/wsp.
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Equilibrium with wake

It turns out that with account of the wake the equilibrium is given by the
same equation, which is now called the Haissinski equation

H n?  V(z2)
f = Zexp <— C(XO‘%) = Zexp (—R — ?0_121 (1023)

But now this should be solved self-consistently because V is a functional
of n(z)

wio 2 e2 / / 1
V(z) = 5o e’ + dz'n(z',t)S(z" — z)
xc cy
2 2 7
_Ps0,2, € J dz'S(z' — z) J danf(z',n) (10.24)
20c mcy
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Numerical solution of the Haissinski equation

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 124401 (2018)

Numerical solution of the Haissinski equation for the equilibrium state
of a stored electron beam

Robert Warnock”
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
and Department of Mathematics and Statistics, University of New Mexico,
Albuguerque, New Mexico 87131, USA

Karl Bane'
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA

® (Received 3 August 2018; published 7 December 2018)

The longitudinal charge density of an electron beam in its equilibrium state is given by the solution of
the Haissinski equation, which provides a stationary solution of the Vlasov-Fokker-Planck equation. The
physical input is the longitudinal wake potential. We formulate the Haissinski equation as a nonlinear
integral equation with the normalization integral stated as a functional of the solution. This equation can be
solved in a simple way by the matrix version of Newtons’s iteration, beginning with the Gaussian as a first
guess. We illustrate for several quasirealistic wake potentials. Convergence is extremely robust even at
currents much higher than nominal for the smrage rings idered. The method o of
earlier procedures, and provides the of ic normalization of the solution.

DOL: 10.1103/PhysRevAccelBeams.21.124401
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Solution of Haissinski equation—SLCDR

We consider here an example of the SLC damping ring, whose stability
was studied in great detail by K. Bane from SLAC.

‘ Parameter ‘ Value ‘ Units ‘

Energy 1.15 GeV
Np 2 x 1019
To 118 ns
wo/2m 99 kHz
oy 7x107*
020 0.5 cm
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Wake and and the beam equilibrium

Longitudinal Wake in the SLC DR Integrated Wake in the SLC DR
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Observations of the microwave instability
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From K. Bane et al. SLAC-PUB-95-6894 (1995).
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Synchrotron frequency depends on the amplitude

One of the important consequences of Haissinski equilibrium is that the
synchrotron frequency is not constant any more — it depends on the
amplitude of the oscillations in the potential well,

ws(J) = wsO+Aws(J)) (1025)

where J is the “action” variable for the longitudinal motion. This occurs
because the potential well for the synchrotron oscillations is not parabolic
any more.
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